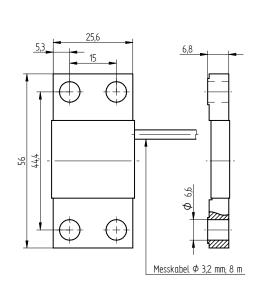
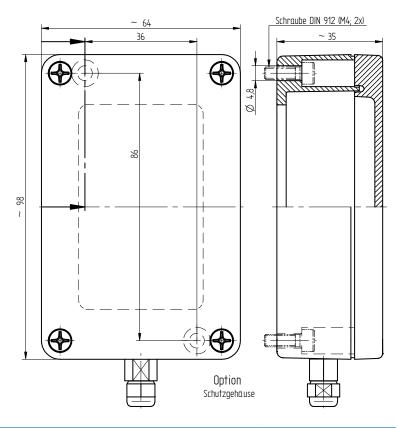


Dehnungssensor DZ-1 mit Nennmessbereich von 300 μm/m


Leistungsmerkmale


- Dehnungssensor für Presskraftüberwachung, Wägung, bzw. Füllstandüberwachung
- TEDS (Transducer Electronic Data Sheet)
 Standard IEEE 1451.4 (optional)
- Sehr kompakte Bauform
- Einfache Montage am Messobjekt
- Zuverlässig und robust
- Hohe Langzeitstabilität
- Schutzart IP65
- Einbau auch nachträglich ohne Produktionsausfall

Anwendungen

- Apparatebau
- Vollautomatisierte Fertigungszentren
- Mess- und Kontrolleinrichtungen
- Materialprüfmaschinen
- Werkzeugbau
- Sondermaschinenbau

Mechanische Abmessungen in mm

Artikel-Nr.	Nennmessbereich [μm/m]	Gewicht [kg]
100437	300	0,2

Anschlussbelegung

Elektrischer Anschluss		
Speisung (-)	Grün	•
Speisung (+)	Braun	•
Signal (+)	Gelb	0
Signal (-)	Weiß	0
Kontrollsignal oder TEDS (Option)	Grau	•
Schirmung	Schirm	

Technische Daten nach VDI/VDE/DKD 2638

Dehnungssensor DZ-1				
Nennmessbereich	[µm/m]	300		
Genauigkeitsklasse	% v. E.	0,5		
Nennkennwert C _{nom}	mV/V	ca. 0,5		
Ein-/Ausgangswiderstand R _e /R _a	Ω	350		
Isolationswiderstand R _{is}	Ω	>2*10 ⁹		
Nennbereich der Speisespannung B _{U, nom}	V	2 12		
Elektrischer Anschluss		Messkabel, PURS, 8 m mit freien Litzen		
Referenztemperatur T _{ref}	°C	23		
Nenntemperaturbereich B _{T, nom}	°C	-10 70		
Gebrauchstemperaturbereich B _{T, G}	°C	-30 80		
Lagerungstemperaturbereich B _{T, S}	°C	-50 95		
Temperatureinfluss auf das Nullsignal TK ₀	% v. E./10 K	±0,2		
Temperatureinfluss auf den Kennwert TK _C	% v. E./10 K	±0,2		
Maximale Gebrauchskraft F _G	% v. E.	150		
Grenzkraft F _L	% v. E.	200		
Bruchkraft F _B	% v. E.	>300		
Zulässige Schwingbeanspruchung F _{rb}	% v. E.	70		
Schraubenanzugsmoment (10.9)	N⋅m	14		
Werkstoff		Rostbeständiger Edelstahl		
Schutzart		IP65		

Optionen

Artikel-Nr.	Bezeichnung	
100218	Kontrollsignal	100 % v. E.
100739	Kontrollsignal	80 % M _{nom}
106154	Kontrollsignal	50 % M _{nom}
113134	TEDS-Standard IEEE 1451.4	
42828	Erweiterter Temperaturbereich	-30 °C 100 °C
107592	6-Leitertechnik	
100447	Schutzgehäuse (AL, Reingewicht: 0,2 kg)	

Kalibrierungen

Artikel-Nr.	Bezeichnung	
400628	Linearitätsdiagramm nach Werksnorm	25 % Stufen
400170	Linearitätsdiagramm nach Werksnorm	10 % Stufen
400960	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	3 Stufen
400652	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	5 Stufen
400640	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	8 Stufen
	DAkkS-Kalibrierung nach Norm auf Anfrage	

Zubehör

Elektrischer Anschluss

Artikel-Nr.	Bezeichnung
10323	Kabelstecker KS6 (6-polig Serie 581) inkl. Sensoranbau
10320	Kabelstecker KSSH15 (15-polig) inkl. Sensoranbau
43418	Eingangsstecker ZA9612FS (ALMEMO) inkl. Sensoranbau und Steckerkalibrierung
49205	Eingangsstecker ZKD712FS (ALMEMO 202) inkl. Sensoranbau und Steckerkalibrierung

Messverstärker

Beispiele der geeigneten Messverstärker für den Dehnungssensor DZ-1:

Weitere geeignete Messverstärker finden Sie auf unserer Homepage unter https://www.lorenz-messtechnik.de/deutsch/produkte/

Begriffsdefinitionen/Berechnungen

Elastische Dehnung

 $\varepsilon = \frac{\Delta \boldsymbol{l}}{\boldsymbol{l}_0}$

ε: Elastische Dehnung

 Δl : Längenänderung l_0 : Anfangslänge

Aus der Definition Längenänderung / Anfangslänge ergibt sich eine dimensionslose Zahl. Als Einheit der Dehnung wird häufig microstrain oder microepsilon verwendet.

1 microstrain [
$$\mu\epsilon$$
] = 10⁻⁶ $\frac{m}{m}$ = 1 $\frac{\mu m}{m}$

Mechanische Spannung

Die mechanische Spannung errechnet sich aus der elastischen Dehnung über den Elastizitätsmodul des Werkstoffes, bzw. aus der Kraft pro Querschnittsfläche.

 $\sigma = \varepsilon * E$ (im elastischen Bereich)

$$\sigma = \frac{F}{A}$$

σ: Mechanische Spannung

ε: Elastische Dehnung

E: Elastizitätsmodul

F: Kraft

A: Querschnittsfläche

Elastizitätsmodul

Stahl: 200 kN/mm²
Aluminium: 70 kN/mm²

Beispiel: Eine elastische Dehnung von 300 μ m/m entspricht einer mechanischen Spannung von 60 N/mm² bei Stahl.